PROGRAMME STANDARDS: COMPUTING

Programme Standards: Computing

First Edition 2010 Second Edition 2014

Malaysian Qualifications Agency 14th Floor, Block B, Menara PKNS-PJ No. 17, Jalan Yong Shook Lin 46050 Petaling Jaya Selangor Darul Ehsan

Tel +603-7968 7002 Fax +603-7956 9496

Email akreditasi@mqa.gov.my

Website www.mqa.gov.my

© Malaysian Qualifications Agency 2015

ISBN:

All the Agency's publications are available on our website: www.mqa.gov.my

Printed copies are available from:

The Standards Division

Malaysian Qualifications Agency

CONTENTS

FORE	EWORD	I
ABBF	REVIATIONS	ا
2.	PROGRAMME AIMS	9
3.	LEARNING OUTCOMES	14
4.	CURRICULUM DESIGN AND DELIVERY	20
5.	ASSESSMENT OF STUDENT LEARNING	26
6.	STUDENT SELECTION	30
7.	ACADEMIC STAFF	35
8.	EDUCATIONAL RESOURCES	38
9.	PROGRAMME MONITORING AND REVIEW	40
10.	LEADERSHIP, GOVERNANCE AND ADMINISTRATION	42
11.	CONTINUAL QUALITY IMPROVEMENT	44
REFE	RENCES	45
APPE	ENDIX 1	47
APPE	ENDIX 2	48
APPE	ENDIX 3	54
APPE	ENDIX 4	73

FOREWORD

In its effort to ensure the quality of programmes in institutions of higher learning in Malaysia, Malaysian Qualifications Agency (MQA) has published various documents such as Malaysian Qualifications Framework (MQF), Code of Practice for Programme Accreditation (COPPA), Code of Practice for Institutional Audit (COPIA), Guidelines to Good Practices (GGP) and Programme Standards (PS). It is important that these quality assurance documents be read together with this document in developing and delivering higher education programmes in Malaysia.

The Programme Standards document outlines sets of characteristics that describe and represent guidelines on the minimum levels of acceptable practices that cover all the nine Malaysian quality assurance areas: programme aims and learning outcomes, curriculum design and delivery, assessment of student learning, student selection, academic staff, educational resources, programme monitoring and review, leadership, governance and administration, and continual quality improvement. The Programme Standards for Computing covers the education levels from certificate to doctoral.

This Programme Standards document has been developed by a panel of experts in consultation with various public and private Higher Education Providers (HEPs), relevant government and statutory agencies, professional bodies, related industries and students. My deepest gratitude goes to them and the MQA officers who put forth tremendous effort and generously gave their time in realizing the Programme Standards for Computing.

Thank you.

Dato' Prof. Dr. Rujhan Bin Mustafa

Chief Executive Officer
Malaysian Qualifications Agency (MQA)
2015

ABBREVIATIONS

ACM Association for Computing Machinery

BOK Body of Knowledge

CGPA Cumulative Grade Point Average

COPIA Code of Practice for Institutional Audit

COPPA Code of Practice for Programme Accreditation

CPD Continuous Professional Development

CS Computer Science

GGP Guidelines to Good Practices

HEP Higher Education Providers

ICT Information and Communication Technology

IEEE-CS The Institute of Electrical and Electronics Engineers - Computer

Society

IS Information System

IT Information Technology

MGC Minimum Graduating Credits

MQA Malaysian Qualifications Agency

MQF Malaysian Qualifications Framework

SE Software Engineering

1. INTRODUCTION

Computing, for the purposes of this Programme Standards involves the study of computers and their applications. Thus, Computing includes designing and building hardware and software systems for a wide range of purposes; processing, structuring, and managing various kinds of information; carrying out scientific studies using computers; making computer systems behave intelligently; creating and using communications and entertainment media; finding and gathering information relevant to any particular purpose.

In the Malaysian context, Information and Communication Technology (ICT) is widely used as a phrase to describe Computing. As a result, Computing degrees have always been referred to as ICT degrees.

For the purpose of Malaysian Higher Education sectors, the learning framework is based on the ACM Problem Space of Computing. Computing is broadly categorised into four (4) major disciplines namely Computer Science, Software Engineering, Information Technology and Information Systems:

- i. Computer Science: Graduates of this discipline, called *Computer Scientists*, should be prepared to work in a broad range of positions involving tasks from theoretical work to software development and can adapt to innovations in ICT; essentially they are able to:
 - a. Designing and implementing software.
 - b. Devising new ways to use computers.
 - c. Developing effective ways to solve computing problems.
 - d. Planning and managing organizational technology infrastructure.
- ii. Software Engineering: Graduates of this discipline, called Software Engineers, should be able to perform and manage activities at every stage of the life cycle of large-scale Software systems; they become specialist in designing and implementing software in the large.
- iii. Information Technology: Graduates of this discipline, called *Information Technology Professionals*, should be able to work effectively at planning,

implementation, configuration and maintenance of an organisation's computing infrastructure; prepared to succeed in roles involving planning and managing technology infrastructure.

iv. Information Systems: Graduates of this discipline, called Information Systems Specialists, should be able to analyse information requirements and business processes and be able to specify and design systems that are aligned with organisational goals.

The four (4) disciplines provide the basic platform for placement of computing programmes. It is worth clarifying that Computer Science and Software Engineering programs prepare students for computing technology creation, while Information Technology and Information System are more designed for roles as experts in using technologies. The other disciplines such as computer engineering and creative multimedia programmes are not covered within this standard. Any programmes that do not comply with this standard should not use the naming conventions specified in this programme standard.

Further, potential employers of new computing bachelor degree graduates must be clear that each of the four disciplines are different. For this reason, the nomenclature of diploma and bachelor degree awards in Computing must be prefixed by these four disciplines to avoid confusion. Consistent nomenclature will reduce the gap between the fresh graduates' capabilities and expectation of employers. However for other than Diploma and Bachelor's Degree programmes, HEPs may determine the specific nomenclature for their awards based on existing national and international best practices.

To help employers select the right graduates for the ICT job role, Multimedia Development Corporation (MDeC) has developed Skills Competency Matrix (SCM). This enables the learning outcomes of the four disciplines to be mapped to the job functions in ICT as shown in the table in **Appendix 2**. Some examples are shown in the table below:

Job Type	Alternative Job Titles	Discipline of Fresh Graduates	
Programmer	Programmer	Computer Science	
	Software Engineer	Software Engineering	
	Software Developer		
Network	Systems Engineer	Computer Science	
Engineer	Systems Administrator	Information Technology	
	IT Administrator		
	Database administrator		
Database • Database Analyst • Database Engineer		Computer Science	
		Information Systems	
	Database Specialist		

Table 1: Skills Competency Matrix (SCM)

Computer Science spans a wide range, from its theoretical and algorithmic foundations to cutting edge developments in Robotics, Computer Vision, Intelligent Systems, Bioinformatics, Forensic Computing and other exciting areas. It involves designing and implementing software, devising new ways to use computers and developing effective ways to solve computing problems.

Computer Science offers a comprehensive foundation that permits graduates to adapt to new technologies and ideas. Computer scientists extend theories and practice for implementation of computer systems which has grown to include aspects of web development, interface design, security issues, mobile computing, and involvement in devising new ways to use computers. Computer scientists are expected to be flexible in performing all types of computing task including software development, system administration, information analysis etc.

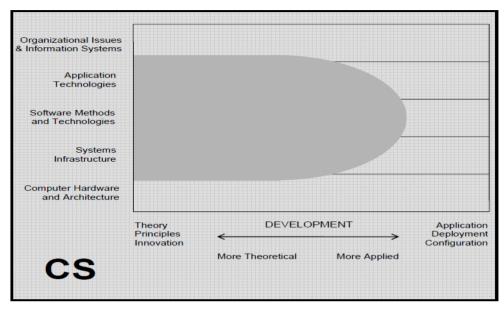


Diagram 1: Association for Computing Machinery (ACM) Problem Space Computing

- Computer Science.

Software Engineering is the discipline of developing and maintaining software systems that behave reliably and efficiently, is affordable to develop and maintain and built to customers' specifications. It has evolved in response to factors such as the growing impact of large scale software systems in a wide range of situations and the increased importance of software in safety-critical applications.

Software Engineering programmes produce graduates, who can understand user requirements and develop software systems. Software Engineers are expected to develop systematic models and reliable techniques for producing high-quality software on time and within a budget.

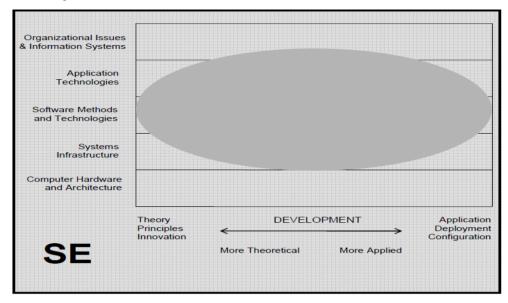


Diagram 2: Association for Computing Machinery (ACM) Problem Space Computing

- Software Engineering.

Information Technology in the broadest sense refers to all aspects of computing. However, in academia, it often refers to meeting the technological needs of business, government, healthcare, schools, and other kinds of organisations through the selection, creation, application, integration and administration of computing technologies.

IT graduates are trained to focus on the application, deployment, and configuration needs of organisations and people over a wide spectrum. IT Professionals have a special focus on satisfying organisational needs that arise from Computing Technology. They assume responsibility for selecting hardware and software appropriate for an organisation, integrating these with organisational needs and its infrastructure, and installing, customising, and maintaining those applications for the computer users in the organisation.

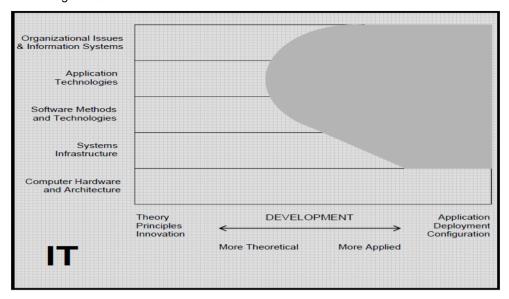


Diagram 3: Association for Computing Machinery (ACM) Problem Space Computing

— Information Technology.

Information Systems integrate Information Technology solutions and business processes to meet the information needs of businesses and other enterprises, enabling them to achieve their objectives in effective, efficient ways. This discipline's perspective on Information Technology emphasises Information, and views technology as an instrument for generating, processing and distributing information.

Information Systems programmes prepare graduates to work with business support applications such as payroll, accounts, receivables and inventory management. Information Systems Specialists are expected to become familiar with computer applications related to these traditional business areas, especially database-management systems and spreadsheets, and other off-the-shelf software products.

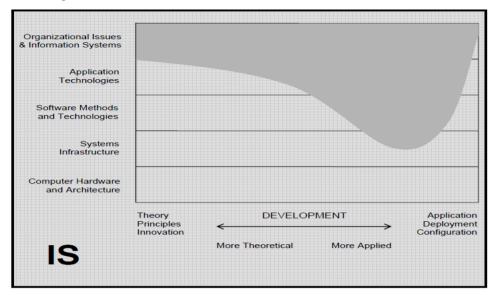


Diagram 4: Association for Computing Machinery (ACM) Problem Space Computing

– Information System.

As a whole, the **Programme Standards for Computing** describes the different levels of standards leading to the award of individual qualifications, namely Certificate (Malaysian Qualifications Framework MQF Level 3), Diploma (MQF Level 4), Bachelor's Degree (MQF Level 6), Master's Degree (MQF Level 7) and Doctoral Degree (MQF Level 8). It has not incorporated Advanced Diploma (MQF Level 5) as the expert focus group for the Programme Standards felt that the qualification best fits the needs and demands of the non-conventional student entry mode and should be given opportunity to develop in accordance to the demand for such a qualification in the future.

These standards are designed to encourage diversity of approach within a framework that is compatible with the national and global human resource requirements and the socio-economic needs. HEPs are expected to combine, teach and assess the subject matter creatively. The Programme Standards provides an inventory of content; delivery and assessment of programmes, thus enabling identification of vital components of qualifications from Certificate to Doctoral awards.

As the statements within the Programme Standards should be viewed as benchmark statements, HEPs are encouraged to go beyond the basic minimum. This document is also intended to be valuable to potential students, their parents and guardians, employers, professional and regulatory bodies, universities, colleges and schools. Assessors and Auditors are guided by these standards in arriving at their recommendation and conclusions.

The development and implementation of this Programme Standards is to ensure that the graduates meet the professional requirements and expectations in their respective fields. HEPs must take into consideration the balance between the fundamental body of knowledge and the rapidly evolving subject matter and introduce effective and sustainable programme improvement. In doing so, the providers should also ensure that the graduates obtain the necessary skills to function effectively.

This is the second edition of the Programme Standards for Computing. A review has been done to the previous Programme Standards: Computing that has been adopted as a guide since 2010 by HEPs in Malaysia. This review process is to ensure that the document is updated with current policies and development of computing transformation.

It is important to note that all partnership or collaborative programmes should also comply with the requirement of this Programme Standards.

As the purpose of this Programme Standards is to provide guidelines in relation to the development and conduct of programmes in the identified fields, it is of paramount importance that this document be read with other quality assurance documents and policies by the Malaysian Qualifications Agency and related agencies. These include but are not limited to:

- i. The Malaysian Qualifications Framework (MQF);
- ii. The Code of Practice for Programme Accreditation (COPPA);
- iii. The Code of Practice for Institutional Audit (COPIA); and
- iv. Relevant Guidelines to Good Practices (GGP).

2. PROGRAMME AIMS

"A Programme's stated aims reflect what it wants the learner to achieve. It is crucial for these aims to be expressed explicitly and be made known to learners and other stakeholders alike" (COPPA, 2008, pp.10).

CERTIFICATE (Malaysian Qualifications Framework, MQF Level 3)

Computing programmes at Certificate level aim to provide computing graduates with a broad range of interpersonal skills and an in-depth understanding and knowledge within their field of study to responsibly take on appropriate jobs. The nomenclature for the Certificates, for example, Certificate in PC Maintenance and Certificate in Networking should reflect concentration areas of the Programme.

The programme aims for a Certificate are to train graduates who:

- i. possess basic knowledge and skills in computing;
- ii. can utilise computing tools and techniques by applying knowledge and interpreting information to solve problems:
- iii. can execute routine tasks and are proficient in the use of relevant tools in their area of training;
- iv. can perform IT support services:
- v. have communication, team and interpersonal skills, and are aware of their social and ethical responsibilities; and
- vi. possess skills for lifelong learning and career development.

DIPLOMA (MQF Level 4)

Computing programmes at Diploma level aim to provide graduates with the skills and a broad-based knowledge to responsibly take on appropriate jobs with moderate autonomy. The graduates should possess a combination of knowledge and skill to assist in an organisation's computing needs.

Generic Programme aims for a Diploma are to prepare graduates who:

- i. possess relevant knowledge, skills and aptitude to meet job specifications;
- ii. can utilise current computing tools and techniques by applying knowledge and interpreting information to solve problems;

- iii. can execute and be responsible for routine tasks;
- iv. have effective communication skills to convey information, problems and solutions;
- v. have team and interpersonal skills, and are aware of their social and ethical responsibilities; and
- vi. possess skills for lifelong learning and career development.

Subject to the concentration in a particular Diploma and its nomenclature, the **specific Programme aims for two categories consisting of four (4) Disciplines** identified in this Programme Standards are:

A. Computer Science or Software Engineering

The Programme should prepare graduates who:

- i. have knowledge of algorithms, software methods and current programming languages;
- ii. have the ability to analyse, design and develop computer applications;
- iii. have the ability to assist in the development of systematic models; and
- iv. have the skills to adhere to standard process-oriented methodologies and procedures for producing high-quality software on time and within a budget.

B. Information Technology or Information Systems

The Programme should prepare graduates who:

- i. have knowledge of organisational and systems needs;
- ii. have the ability to configure, integrate, deploy systems and utilise software according to the organisational needs as well as providing maintaining and technical support within the organisations; and
- iii. have the ability to explain the concept importance of human-computerinteraction.

BACHELOR'S DEGREE (MQF Level 6)

Computing programmes at Degree level aim to provide graduates with sufficient knowledge and skills to take on appropriate responsibility with a higher degree of autonomy from the Diploma holders. The graduates should possess the ability to be responsible for an organisation's computing needs.

Generic programme aims for a Bachelor's Degree are to prepare graduates who:

- i. possess skills for lifelong learning, research and career development;
- ii. have communication, team, leadership and interpersonal skills, and aware of the social, ethical and legal responsibilities; and
- iii. have entrepreneurial skill and a broad business and real world perspective.

Subject to the specialisation/major/minor in a particular Bachelor's Degree and its nomenclature, the specific **Programme aims for the four (4) Disciplines** identified in this Programme Standards are:

A. Computer Science

The Programme should prepare graduates who:

- i. possess fundamental knowledge, principles and skills in Computer Science;
- ii. have strong analytical and critical thinking skills to solve problems by applying knowledge, principles and skills in Computer Science;
- iii. possess and able to apply fundamental mathematical, scientific and theoretical computing knowledge in analysing, modelling, designing, developing and evaluating computing solutions; and
- iv. understand the interplay between theory and practice of computer science and the essential links between them;

B. Software Engineering

The Programme should prepare graduates who:

- i. possess fundamental knowledge, principles and skills in Software Engineering;
- ii. have strong analytical and critical thinking skills to solve problems by applying knowledge, principles and skills in Software Engineering; and
- iii. are competent in applying appropriate methodologies, models and techniques that provide a basis for analysis, design, development, testing and implementation, evaluation, maintenance and documentation of a large scale software system.

C. Information Technology

The Programme should prepare graduates who:

- i. possess fundamental knowledge, principles and skills in Information Technology;
- ii. have strong analytical and critical thinking skills to solve problems by applying knowledge, principles and skills in Information Technology;
- iii. possess the ability to design, implement and manage Information Technology solutions and resources, and recognise the impact of technology on individuals, organisations and society; and
- iv. possess skills to integrate various technology solutions.

D. Information Systems

The Programme should prepare graduates who:

- i. possess fundamental knowledge, principles and skills in Information Systems;
- ii. have strong analytical and critical thinking skills to solve problems by applying knowledge, principles and skills in Information Systems;
- iii. understand business requirements and have the ability to plan, design and manage business Information Systems, with the relevant technology and knowledge to enhance organisational performance; and
- iv. Support the design and IT solutions.

MASTER'S DEGREE (MQF Level 7)

Computing programmes at Master's level aim to provide Master's Degree holders with advanced knowledge and skills to deal with an organisation's computing needs. The programmes are aimed to cater for both computing and non-computing graduates. In applying the aims below, HEPs are required to adapt in accordance to the needs of the candidates.

The programme aims for a Master's level are to:

- i. provide graduates with advanced knowledge and skills in computing;
- equip graduates with advanced theoretical principles and scientific methods to create effective solutions to problems and to evaluate them;
- train graduates to work on a project in which they propose, design, build, test, analyse, and deliver a computing solution to meet appropriate computing standards and realistic constraints;
- iv. instill graduates with skills to seek knowledge through lifelong learning;

- v. equip graduates with the ability to supervise and carry out research under supervision;
- vi. develop graduates' effective communication skills in both written and oral form; and
- vii. inculcate graduates with professional and ethical responsibilities as well as understanding the possible social, economic, cultural, legal and environmental impact of their computing solutions in the global context.

DOCTORAL DEGREE (MQF Level 8)

Doctoral level qualification should provide graduates with the ability to develop and expand knowledge and application of computing, both in the organisation and society.

The programme aims for a Doctoral level are to:

- prepare competent practitioners/researchers with a firm grounding in computing who can foster research and development of new knowledge in specific areas;
- ii. equip practitioners/researchers with in depth knowledge of computing and a focused understanding in the area of expertise;
- iii. prepare practitioners/researchers who can apply skills and principles of lifelong learning in academic and career development;
- iv. develop practitioners'/researchers' effective communication skills in both written and oral form;
- v. equip practitioners/researchers with the ability to supervise and carry out independent research; and
- vi. inculcate practitioners/researchers with professional and ethical responsibilities as well as understanding the possible social, economic, cultural, legal and environmental impact of their computing solutions in the global context.

3. LEARNING OUTCOMES

Learning Outcomes are detailed statements described in explicit terms of learners' achievement and are achievable and assessable upon completion of a period of study.

"The quality of programme is ultimately assessed by the ability of the learner to carry out their expected roles and responsibilities in society. This requires the programme to have a clear statement of the learning outcomes to be achieved by the learner" (COPPA, 2008, pp.11).

These learning outcomes should **cumulatively reflect the eight domains of learning outcomes**, which are significant for Malaysia (MQF, 2007, Para 15, pp.4) and are related to the various levels of taxonomy accordingly, in line with national and global developments.

The eight domains of learning outcomes are:

- i. knowledge;
- ii. practical skills;
- iii. social skills and responsibilities;
- iv. values, attitudes and professionalism;
- v. communication, leadership and team skills;
- vi. problem solving and scientific skills;
- vii. information management and lifelong learning skills; and
- viii. managerial and entrepreneurial skills.

The knowledge and practical skills in computing encompass five areas in the Association for Computing Machinery (ACM) Problem Space Computing as follows:

- i. Organisation issues and information system.
- ii. Application technologies.
- iii. Software methods and technologies.
- iv. System infrastructure.
- v. Computer hardware and architecture.

Upon completion of the programme, graduates should be able to:

- demonstrate an understanding of basic knowledge and skills in their area of concentration:
- utilise computing tools and techniques to solve problems related to the area of concentration;
- iii. perform a range of support tasks such as installation, configuration, basic maintenance and data entry:
- iv. execute instructions as described in user and technical manuals;
- v. apply skills and principles of lifelong learning in academic and career development;
- vi. communicate effectively with peers, clients, superiors and society at large;
- vii. demonstrate teamwork, interpersonal, and social skills; and
- viii. demonstrate professionalism, social and ethical considerations in accordance with ethical and legal principles.

DIPLOMA

Generic learning outcomes

Upon completion of the programme, graduates should be able to:

- demonstrate the ability to articulate and document work-flow and processes during project development:
- ii. apply skills and principles of lifelong learning in academic and career development;
- iii. communicate effectively with peers, clients, superiors and society at large;
- iv. demonstrate teamwork, interpersonal, entrepreneurial and social skills; and
- v. demonstrate professionalism and social and ethical considerations in accordance with ethical and legal principles.

Subject to the concentration in a particular Diploma and its nomenclature, the specific learning outcomes for the four (4) Disciplines identified in this Programme Standards are:

15

A. Computer Science or Software Engineering

Upon completion of the programme, graduates should be able to:

- i. develop and write computer programmes using at least one industry relevant general purpose programming language;
- ii. analyse a problem, model and design a solution, implement and test projects to meet real world needs;
- iii. select appropriate data structure and basic algorithms for software solutions;
- iv. use industry relevant methods and tools to manage, configure and develop computer-based systems; and
- v. apply industry standard practices in software development life cycle.

B. Information Technology or Information Systems

Upon completion of the programme, graduates should be able to:

- i. obtain, analyse and document user requirements for real-world projects;
- ii. develop appropiate IT solutions in relevant areas;
- iii. design and manage computer networks or information system;
- iv. provide technical support, configure, deploy and maintain computer solutions; and
- v. interpret information and system models for an organisation's functional areas.

BACHELOR'S DEGREE

Generic learning outcomes

Upon completion of the programme, graduates should be able to:

- . apply skills and principles of lifelong learning in academic and career development:
- ii. communicate effectively with peers, clients, superiors and society at large;
- iii. demonstrate teamwork, leadership, interpersonal and social skills;
- iv. utilise relevant techniques and demonstrate analytical and critical thinking skills in problem solving;
- v. demonstrate professionalism and social and ethical consideration in accordance with ethical and legal principles; and
- vi. apply broad business and real world perspectives daily and demonstrate entrepreneurial skills.

Subject to the specialisation/major/minor in a particular Bachelor's Degree and its nomenclature, the **specific learning outcomes for the four (4) disciplines** identified in this Programme Standards are:

A. Computer Science

Upon completion of the programme, graduates should be able to:

- i. demonstrate knowledge of essential facts, concepts, principles, and theories relating to Computer Science;
- analyze algorithms as well as design and optimize computational solutions;
 and
- iii. apply computing skills in analyzing, modelling, designing, developing, programming and evaluating efficient computing solutions.

B. Software Engineering

Upon completion of the programme, graduates should be able to:

- i. demonstrate knowledge of essential facts, concepts, principles, and theories relating to Software Engineering;
- ii. apply theoretical principles of Software Engineering in relevant areas; and
- iii. apply appropriate methodologies, models and techniques that provide a basis for analysis, design, development, test and implementation, evaluation, maintenance and documentation of a large scale software.

C. Information Technology

Upon completion of the programme, graduates should be able to:

- i. demonstrate knowledge of essential facts, concepts, principles, and theories relating to Information Technology;
- ii. apply theoretical principles of Information Technology in relevant areas; and
- iii. design, implement and manage Information Technology solutions and resources, and recognise the impact of technology on individuals, organisation and society-

D. Information Systems

Upon completion of the programme, graduates should be able to:

- i. demonstrate knowledge of essential facts, concepts, principles, and theories relating to Information Systems;
- ii. demonstrate understanding of business requirement;
- iii. apply theoretical principles of Information Systems in relevant areas; and
- iv. be able to plan, design and manage business Information Systems, with the relevant technology and knowledge to enhance organisational performance.

MASTER'S DEGREE

Upon completion of the programme, graduates should be able to:

- apply and integrate knowledge concerning current research issues in computing
 - and produce work that is at the forefront of developments in the domain of the programme of study;
- ii. evaluate and analyse computing solutions in terms of their usability, efficiency and effectiveness;
- iii. develop computing solutions and use necessary tools to analyse their performance;
- iv. apply existing techniques of research and enquiry to acquire, interpret and extend, knowledge in computing:
- v. communicate and function effectively in a group;
- vi. prepare, publish and present technical material to a diverse audience; and
- vii. demonstrate behaviour that is consistent with codes of professional ethics and responsibility.

DOCTORAL DEGREE

Upon completion of the programme, graduates should be able to:

- demonstrate a systematic comprehension and in-depth understanding of a discipline and mastery of skills and research methods related to the field of computing;
- ii. critically analyse, evaluate and synthesise new and complex ideas;
- iii. show scholarly capabilities to generate, design, implement and adopt the integral part of the research process based on the computing theoretical framework:
- iv. contribute to original research that broadens the boundary of knowledge through an in-depth thesis, which has been presented and defended

- according to International standards including writing in Internationally refereed publications;
- v. communicate to peers, scholarly communities and society at large through the preparation, publication and presentation of technical material;
- vi. promote the technological, social and cultural progress in a knowledgebased society in both academic and professional contexts;
- vii. demonstrate behaviour that is consistent with codes of professional ethics, legal requirements and responsibility; and
- viii. supervise research projects.

4. CURRICULUM DESIGN AND DELIVERY

For the purpose of this Programme Standards, reference is made to the Code of Practice for Accreditation of Programmes (COPPA) and in particular, the section on 'Curriculum Design and Delivery'. "The term 'curriculum design and delivery' is used interchangeably with the term 'programme design and delivery'. 'Programme' means an arrangement of courses that are structured for a specified duration and the learning volume to achieve the stated learning outcomes to lead to an award of a qualification" (COPPA, 2008, pp.12).

This section of the Programme Standards contains benchmarked statements pertaining to the structure and delivery of a programme within the field of Computing.

Tables below represent the benchmark requirements for all levels of qualifications and they include the requirements for the various classifications of modules (compulsory, core, concentration/specialization, field elective and free electives). Specific requirement as to the body of knowledge for the different levels (Certificate – Doctoral Degree) and disciplines are provided in **Appendix 3.** HEPs are given the flexibility to design their own programmes; however, they are expected to cover the body of knowledge indicated in this document. For academic collaboration programmes such as 3+0 in computing, the local HEPs shall deliver original curriculum offered by the foreign partner HEPs in its entirety.

Programming skills and the ability to learn new programming languages is very important in computing, especially in computer science and software engineering. For computer science programmes, students need to master a programming language that will enable them to appreciate the underlying computer architecture and prepare them for other critical programming tasks, such as C/C++. In addition they will need to master a second programming language that is relevant to the programme.

Industrial training is crucial in the development of students' maturity and experience. Hence, HEPs need to allocate a required number of units for this purpose. For the purpose of calculation of credits 1 credit is equal to a minimum of 2 weeks of training. For bachelor's degree programme it is highly recommended the duration for industrial

training should be around six consecutive months. While for diploma programme the recommended duration is three consecutive months.

CERTIFICATE				
Minimum Graduating Credits – 60				
Component Percentage (%) Credits				
Mata Pelajaran Umum (MPU Modules	10 – 15	6 - 9		
Core Modules	30 - 35	18 - 21		
Concentration	43 – 77	26 - 46		
Industrial Training	0 – 7	0 - 4		

Recommended delivery methods:

- i. Lectures
- ii. Tutorials
- iii. Practical Class
- iv. Laboratory work

DIPLOMA Minimum Graduating Credits – 90					
Component Percentage (%) Credits					
MPU Modules	9 – 12	8 - 11			
Core Modules	24 – 39	21 - 35			
Concentration	19 – 44	17 - 40			
Elective Modules	9 – 22	8 - 20			
Industrial Training	4 – 13	4 - 12			

- i. Lectures
- ii. Tutorials
- iii. Practical Class
- iv. Laboratory work
- v. Blended Learning

BACHELOR'S DEGREE (COMPUTER SCIENCE)						
Minimum Graduating	Minimum Graduating Credits – 120					
Component Percentage (%) Credits						
MPU Modules	8 – 12	10 - 14				
Core Modules	28 – 38	33 – 45				
Specialisation / Field Electives	23 – 56	27- 67				
Final Year Project	5 – 8	6 - 11				
Industrial Training	5 – 10	6 - 12				
Free modules (non computing preferred)	10 – 23	12 - 27				

BACHELOR'S DEGREE (SOFTWARE ENGINEERING)					
Minimum Graduating	Minimum Graduating Credits - 120				
Component	Credits				
MPU Modules	8 – 12	10 - 14			
Core Modules	45 – 55	54 - 66			
Specialisation / Field Electives	10 – 33	12 – 40			
Final Year Project	5 - 8	6 - 11			
Industrial Training	5 – 10	6 - 12			
Free modules (non computing preferred)	10 – 23	12 - 27			

BACHELOR'S DEGREE (INFORMATION TECHNOLOGY / INFORMATION SYSTEM) **Minimum Graduating Credits - 120** Component Percentage (%) Credits MPU Modules 8 – 12 10 - 14 28 - 38 Core Modules 33 - 45 Specialisation / Field Electives 23 - 56 27 – 67 Final Year Project 5 - 8 6 - 11 Industrial Training 5 - 10 6 - 12 12- 30 Free modules (non computing preferred) 10 - 25

Recommended delivery methods:

- i. Lecture
- ii. Tutorial
- iii. Practical class
- iv. Laboratory work
- v. Field visit/Field work
- vi. Role play/Simulation
- vii. Case study
- viii. Blended learning
- ix. Open and Distance Learning (ODL)

	MASTER'S DEGREE BY COURSEWORK					
	Minimum Graduating Credits - 40					
Component Percentage (%) Cred				Credits		
Core	Core Modules including Research		Research	50 - 63	20 - 25	
Method	Methodology					
Project	Project Paper 23 - 30 9 - 12					
Specialisation / Field Electives				15 - 20	6 - 12	

- i. Lectures
- ii. Industrial visits
- iii. Case study
- iv. Problem-based learning
- v. Guest lecture series
- vi. Interactive learning

MASTER'S DEGREE BY MIXED MODE Minimum Graduating Credits – 40					
Component Percentage (%) Credits					
Core Modules including Research	30 - 50	12 - 20			
Methodology					
Dissertation	50 - 70	20 - 28			

Note:

i. Ratio of coursework to dissertation is within the range of 50:50 or 40:60 or 30:70.

Recommended delivery methods:

- i. Lectures
- ii. Industrial visits
- iii. Case study
- iv. Supervision of dissertation
- v. Problem-based learning
- vi. Guest lecture series
- vii. Interactive learning
- viii. Research seminars/workshop

MASTER'S DEGREE by RESEARCH No given credit value				
Component Remarks				
Dissertation	100%			
Research Methodology	Compulsory			
Relevant Pre-Requisites Modules	Optional			

Note:

- i. Students are required to undertake research in a related field of study and submit a dissertation.
- ii. The HEP must have a set of procedures and guidelines pertaining to;
 - a. Minimum and maximum periods of candidature.
 - b. Format of the thesis.

- i. Field research
- ii. Problem-based learning
- iii. Supervision of dissertation
- iv. Research seminars/workshop
- v. Interactive learning

DOCTORAL DEGREE by RESEARCH No given credit value			
Component Remarks			
Thesis	100%		
Research Methodology	Compulsory		
Relevant Pre-Requisites Modules	Optional		

Note:

- i. Students are required to undertake research in a related field of study and submit a thesis.
- ii. The HEP must have a set of procedures and guidelines pertaining to;
 - a. Minimum and maximum periods of candidature.
 - b. Format of the thesis.

- i. Lectures
- ii. Field research
- iii. Supervision of thesis
- iv. Problem-based learning
- v. Research seminars/workshop
- vi. Colloquium
- vii. Interactive learning

5. ASSESSMENT OF STUDENT LEARNING

"Student assessment is a crucial aspect of quality assurance because it drives student learning. It is one of the most important measures to show the achievement of learning outcomes. The result of assessment is also the basis in awarding qualifications. Hence, methods of student assessment have to be clear, consistent, effective, reliable and in line with current practices and must clearly support the achievement of learning outcomes" (COPPA, 2008, pp.15).

Specific methods of assessment will depend on the specific requirement of each module. However, as a general guide, the following must be considered:

- The combination of the various assessment methods should show the achievement of the Learning Outcomes;
- ii. Summative and formative assessments should be used:
- iii. Knowledge and understanding (the cognitive domain) should be tested through written, oral or other suitable means but practical skills should be tested by practical evaluation such as Lab Tests;
- iv. In modules requiring practical skills, pass in practical evaluation is compulsory. A pass here implies that the examiner is satisfied that the candidate has demonstrated the ability to perform required practical skills; and
- v. The types of assessments indicated below are merely examples. Higher Education Providers (HEPs) are encouraged to use a variety of methods and tools appropriate for the learning outcomes and competencies.

Generally, students shall be evaluated either for continuous and final evaluation through:

- i. Examination
 - Written examination such as quizzes, test and final examination.
 - Oral examination.
- ii. Coursework
 - Assignments, Report.
- iii. Project (Individual and/or Group)
 - Report, Group Activities, Presentation.

Other evaluation methods such as class participation and attendance may be used whenever appropriate.

Suggested breakdown for each level of award from Certificate to Master Degree are as given below. Candidates should pass BOTH formative (continuous) and summative (final) assessment for every subject. HEPs can define the meaning of pass, however a pass should imply that the examiner must be satisfied that the candidate has met all the learning outcomes of the particular subject.

The following tables provide a summary for the method of evaluation for the listed qualifications:

	MODULES		
QUALIFICATIONS FORMATIVE ASSESSMENT (%)		SUMMATIVE ASSESSMENT (%)	REQUIRED
Certificate	50 - 70	30 - 50	Written Assessment
			Oral Assessment
			Practical Assessment
Diploma	50 - 70	30 - 50	Written Assessment
			Oral Assessment
			Practical Assessment
			Industrial Attachment
			/Internship
			Project
Bachelor's Degree	40 – 70	30 - 60	Written Assessment
			Oral Assessment
			Practical Assessment
			Industrial Attachment
			/Internship
			Project
Master's Degree by	-	-	Written Assessment
Coursework			Presentation
			Project Paper
Master's Degree by	-	-	Written Assessment
Mixed mode			Presentation

	MODULES		
QUALIFICATIONS	FORMATIVE ASSESSMENT (%)	SUMMATIVE ASSESSMENT (%)	REQUIRED
			Dissertation
			 Viva Voce

For Masters and PhD by Research:

- i. Formative assessment must include:
 - a) Monitoring of research progress periodically (for example, through a progress report, or a proposal defense).
 - b) Research presentation/colloquium/seminar/workshop.
- ii. Summative assessment is used to assess all learning outcomes of a programme, and must include:
 - a) completion of prescribed courses;
 - b) thesis or dissertation; and
 - c) viva voce.

The following table provides a summary for the method of evaluation for Masters and PhD by Research:

	MODULES		
QUALIFICATIONS	FORMATIVE ASSESSMENT (%)	SUMMATIVE ASSESSMENT (%)	REQUIRED
Master's Degree by	-	-	 Presentation
Research			Thesis (two examiners)
			 Viva Voce
			One (1) refereed
			publication
Doctoral Degree	-	-	Thesis (internal and
			external examiners)
			 Viva Voce
			One (1) internationally
			refereed publication

Compositions of dissertation/thesis examiners are prescribed in the Standards for Master's and Doctoral Degree. The name of all supervisors and examiners should be stated in the front pages of thesis and dissertation.

6. STUDENT SELECTION

This section of the Programme Standards concerns the recruitment of students into the individual programme of study. In general, admission policies of the Programme need to comply with the prevailing policies of the Malaysian government.

"There are varying views on the best method of student selection. Whatever the method used, the Higher Education Provider (HEP) must be able to defend its consistency. The number of students to be admitted to the Programme is determined by the capacity of the HEP and the number of qualified applicants. HEP admission and retention policies must not be compromised for the sole purpose of maintaining a desired enrolment. If an HEP operates geographically separated campuses or if the Programme is a collaborative one, the selection and assignment of all students must be consistent with national policies" (COPPA, 2008, pp.17).

The benchmarked standards for recruitment of students into computing programmes are provided below. The standards are created keeping in mind the generic national Higher Education policies pertaining to minimum student entry requirement. Higher Education Provider (HEP) must take cognisance of any specific policies that may apply to their individual Institution. All qualifications referred to below must be accredited by MQA or by an agency equivalent to MQA in the issuing country.

The minimum standards are as follows:

CERTIFICATE

i. A pass in Sijil Pelajaran Malaysia (SPM) or its equivalent with ONE (1) credit, and a Pass in Mathematics;

OR

ii. A pass in Sijil Kemahiran Malaysia (SKM) Level 2 in a related field and a pass in Mathematics at SPM level or its equivalent. i. A pass in SPM with at least Credit in any 3 subjects inclusive of Mathematics or any equivalent qualification;

OR

ii. A pass in Sijil Tinggi Persekolahan Malaysia (STPM), with a minimum of Grade C
 (GP 2.00) in any subject or any equivalent qualification and a credit in Mathematics at SPM level or its equivalent;

OR

iii. A pass in Sijil Tinggi Agama Malaysia (STAM) with a minimum grade of Maqbul (pass) and a credit in Mathematics at SPM level or its equivalent;

OR

- iv. A pass in SKM Level 3, and a credit in Mathematics at SPM level or its equivalent;OR
- v. A pass in any qualifications equivalent to Certificate (MQF Level 3) and a credit in Mathematics at SPM level or its equivalent.

Candidates without a credit in mathematics at SPM level or its equivalent may be admitted if the Certificate programme contains subjects in mathematics that are equivalent to mathematics at SPM level.

Candidate with a credit in computing related subject at SPM level or its equivalent may be given preferential consideration.

BACHELOR'S DEGREE

Bachelor's Degree in Computer Science and Software Engineering

 i. A pass in Matriculation or Foundation studies with minimum CGPA of 2.00 and a credit in Additional Mathematics at SPM Level or its equivalent;

OR

 ii. A pass in Sijil Tinggi Persekolahan Malaysia (STPM) with a minimum Grade C (GP 2.00) in any 2 subjects and a credit in Additional Mathematics at SPM Level or its equivalent;

OR

31

i. A Diploma in Computer Science OR Software Engineering OR Information Technology OR Information Systems or equivalent with a minimum CGPA of 2.50 and a credit in Additional Mathematics at SPM Level or its equivalent. Candidates with CGPA below 2.50 but above 2.00 with a credit in additional mathematics at SPM level or its equivalent may be admitted subject to a rigorous internal assessment process;

OR

ii. Any other Diploma in science and technology with a minimum CGPA of 2.50 may be admitted subject to a rigorous internal assessment process and a credit in Additional Mathematics at SPM level or its equivalent.

Candidates without a credit in additional mathematics at SPM level or its equivalent may be admitted if the Diploma programme contains subjects in mathematics that are equivalent to additional mathematics at SPM level.

Candidate with a credit in computing related subject at SPM or STPM level or its equivalent may be given preferential consideration.

Bachelor's Degree in Information Technology and Information Systems

 i. A pass in Matriculation or Foundation studies with minimum CGPA of 2.00 and a credit in Mathematics at SPM Level or its equivalent;

OR

 ii. A pass in Sijil Tinggi Persekolahan Malaysia (STPM) with a minimum Grade C (GP 2.00) in any 2 subjects and a credit in Mathematics at SPM Level or its equivalent;

OR

iii. A Diploma in Computer Science OR Software Engineering OR Information Technology OR Information Systems or equivalent with a minimum CGPA of 2.50 and a credit in Mathematics at SPM Level or its equivalent;

OR

iv. Any other Diploma in Science and technology or business studies with a minimum CGPA of 2.50 may be admitted subject to a rigorous internal assessment process and a credit in Mathematics at SPM level or its equivalent. Candidates with CGPA below 2.50 but above 2.00 with a credit in mathematics at SPM level or its equivalent may be admitted subject to a rigorous internal assessment process.

Candidate with a credit in computing related subject at SPM or STPM level or its equivalent may be given preferential consideration.

MASTER'S DEGREE

Master's Degree by Research

 i. A Bachelor's Degree of Computing or in the area of science and technology or related to computing, with a minimum CGPA of 3.00;

OR

ii. A Bachelor's Degree of Computing or in the area of science and technology or related to computing, with CGPA below 3.00 but above 2.50, can be accepted subject to rigorous internal assessment process;

OR

iii. A Bachelor's Degree of Computing or in the area of science and technology or related to computing, with CGPA less than 2.50, with a minimum of 5 years working experience in a relevant field may be accepted.

Master's Degree by Coursework and Mixed Mode

i. A Bachelor's Degree or its equivalent, with a minimum CGPA of 2.75;

OR

 ii. A Bachelor's Degree or its equivalent, with a minimum CGPA of 2.50 and not meeting CGPA of 2.75, can be accepted subject to rigorous internal assessment process;

OR

iii. A Bachelor's Degree or its equivalent, with CGPA less than 2.50, with a minimum of 5 years working experience in a relevant field may be accepted.

For candidates without Computing Degree, prerequisite modules in computing must be offered to adequately prepare them for their advanced study.

DOCTORAL DEGREE

A Master's Degree or equivalent **AND** candidates must have completed at least ONE (1) of their earlier Degrees (Master's or Bachelor's) in Computing or related to computing.

International students must have proof of good proficiency in verbal and written English. For example International English Language Testing System (IELTS) score of 6.0 or its equivalent. If a student does not meet this requirement, HEPs must offer English proficiency courses to ensure that the student's proficiency is sufficient to meet the needs of the programme.

Note for PhD by Research:

- i. There shall be no direct entry from Bachelor's Degree level to PhD level.
- ii. Candidates registered for Master's Degree by research programmes with a Bachelor's Degree level may apply to convert their candidacy to the PhD programmes subject to having shown competency and capability in conducting research at PhD level and approval by the HEP Senate.

7. ACADEMIC STAFF

"The quality of the academic staff is one of the most important components in assuring the quality of Higher Education and thus every effort must be made to establish proper and effective recruitment, service, development and appraisal policies that are conducive to staff productivity" (COPPA, 2008, pp.21).

Staff Development

Academic staffs are vital to deliver a quality programme and to perform teaching effectively, as well as to produce graduates that are employable and accepted by the industry. As the industry is dynamic and globally influenced, academic staff needs to continually update themselves with changes around the globe. Thus, HEPs must ensure that all academic staff is well-equipped with the latest knowledge and skills in their teaching and learning activities.

HEPs should facilitate academic staff to participate in relevant Continuous Professional Development (CPD) programmes of at least 40 hours per year, such as:

- i. Professional development for full-time staff.
- ii. Updated teaching and learning skills.
- iii. Updated research and supervisory skills.
- iv. Industry attachment (if required by HEPs).
- v. Research, consultation and community services involvement.

The following sections provide benchmarked requirements for the various levels of the Computing qualifications.

CERTIFICATE

Academic staff qualification

Diploma with TWO (2) years relevant industrial experience or professionally certified in the relevant area OR Bachelor's Degree in related field.
 (30% of the staff with minimum TWO (2) years relevant industrial work experience or professionally certified in the relevant area).

Academic staff ratio

- i. Full-time and Part-time teaching faculty At least 50% full-time.
- ii. Overall Staff-Student ratio 1:20.

DIPLOMA

Academic staff qualification

- i. Bachelor's Degree in related field.
- ii. (30% of the staff with minimum TWO (2) years relevant industrial work experience or professionally certified in the relevant area).

Academic staff ratio

- i. Full-time and Part-time teaching faculty At least 60% full-time.
- ii. Minimum number of academic staff 6.
- iii. Overall Staff-Student ratio 1:20.

BACHELOR'S DEGREE

Minimum academic staff qualification

- Master's Degree in the related field. For those without Bachelor's degree in computing or related field but teaching computing subject, this Master's Degree must be obtained through taught courses.
 - (30% of the staff with minimum TWO (2) years relevant industrial work experience).
- ii. Bachelor's Degree with FIVE (5) years related work experience in the subject taught.
 - (The programme should not employ more than 20% of the staff of this category).

Academic staff ratio

- i. Full-time and Part-time teaching faculty At least 60% full-time.
- ii. Minimum number of academic staff 10.
- iii. Overall Staff-Student ratio 1:15.

MASTER'S DEGREE

Academic staff /supervisor qualification

- Doctoral Degree in related field. For those without Bachelor's degree in computing or related field, the Master's Degree must be obtained through taught courses.
- ii. Master's Degree in related field with FIVE (5) years relevant work experience.
 (The Programme should not employ more than 20% of the staff in this category).

Academic staff ratio

i. Full-time and Part-time teaching faculty – At least 60% full-time.

Supervisor-student ratio

- i. Overall main supervisor-student ratio 1:10 (by coursework and mixed mode).
- ii. Overall main supervisor-student ratio 1:7 (by research).
- Maximum number of postgraduate students per supervisor should not exceed
 15.

DOCTORAL DEGREE

Academic staff / supervisor qualification

- i. Doctoral Degree or equivalent in related field.
- ii. For those Doctoral Degree holders with less than 2 years experience in teaching and research, a senior academic staff (with the experience of successfully graduating a postgraduate student) should co-supervise the student.

Academic staff ratio

i. Full-time and part-time teaching faculty – at least 60% of the staff are full-time.

Supervisor-student ratio

- Overall main supervisor-student ratio 1:7.
- ii. The main supervisor must be a full-time staff of the conferring HEPs.
- iii. Maximum number of postgraduate students per supervisor should not exceed15.

8. EDUCATIONAL RESOURCES

"Adequate educational resources are necessary to support the teaching-learning activities of the Programme. These resources include finance, expertise, physical infrastructure, information and communication technology, and research facilities. The physical facilities of a programme are largely guided by the needs of the specific field of study" (COPPA, 2008, pp.23).

For Computing programmes, Higher Education Providers (HEPs) are required to provide sufficient resources conducive to support teaching and learning in the field. For lecture and tutorial rooms, and computer labs, sufficient space to accommodate student-centered learning must be provided. For research in Post-graduate programmes, candidates should be provided with a conducive work area.

CERTIFICATE and DIPLOMA

- i. Computer Labs
- ii. Tutorial Rooms
- iii. Lecture Rooms (with sufficient Audio Visual facilities)
- iv. Library (including on-line resources)
- v. Internet Access
- vi. Sufficient access to relevant software and hardware according to the needs of the programmes and students
- vii. Computer Lab Demonstrator-Student ratio 1:20

BACHELOR'S DEGREE

- i. Computer Labs
- ii. Research/Project Lab for final year students
- iii. Specialised Lab according to programme needs
- iv. Lecture Rooms (with sufficient Audio Visual facilities)
- v. Tutorial Rooms
- vi. Library (including on-line resources)
- vii. Internet Access
- viii. Sufficient access to relevant software and hardware according to the needs of the programmes and students
- ix. Computer Lab Demonstrator-Student ratio 1:20

MASTER'S and DOCTORAL DEGREES

- i. Computer Labs
- ii. Research/Project Lab
- iii. Specialised Lab according to the Programme needs
- iv. Lecture Rooms (with sufficient Audio Visual facilities)
- v. Tutorial Rooms
- vi. Working Space/Station
- vii. Library (including on-line resources)
- viii. Internet Access
- ix. Relevant specialised software and hardware according to the needs of the programmes and students.

9. PROGRAMME MONITORING AND REVIEW

"Quality enhancement calls for programmes to be regularly monitored, reviewed and evaluated. This includes the monitoring, reviewing and evaluating of institutional structures and processes (administrative structure, leadership and governance, planning and review mechanisms), curriculum components (syllabi, teaching methodologies, learning outcomes) as well as student progress, employability and performance" (COPPA, 2008, pp.27).

Feedback from multiple sources such as students, alumni, academic staff, employers, professional bodies and parents must be obtained in order to assist in enhancing the quality of the programme. These feedback and the corresponding actions taken should be documented for auditing purposes.

In order to institutionalise the feedback mechanism, HEPs should establish at least the following committees;

- i. Board of Studies
- ii. Student representative committee
- iii. Board of Examiners

Board of Studies

HEPs must provide a credible Board of Studies which meets at least once a year for the monitoring and reviewing of the Computing programmes. The Board of Studies should comprise computing professionals, industry representative, external academic evaluators, subject-matter experts, alumni and other relevant stakeholder.

One of the reports to be provided to Board of Studies concerns programme effectiveness that has been evaluated through various longitudinal studies of the graduates. The report should include perceptions of society and employers on the strengths and weaknesses of the graduates, graduate employability and benchmark against other HEPs.

Student Representative Committee

This committee comprises of students currently enrolled in the computing programmes. The committee members will meet with the HEPs administration at least once in a semester to provide feedback from the student perspective regarding the quality of the programmes and any other issues that impact their performance. Student feedback, for example, through questionnaires and representation in program committees, is keys for identifying specific problems and for continual improvement of the programme.

Board of Examiners

Board of examiners will meet at the end every semester to review student achievement and performance.

Feedback obtained from short term and long term analysis of student performance that is used to improve the quality of the programme. Measures of student performance would include the average study duration, assessment scores, passing rate at examinations, success and dropout rates, students' and alumni's report about their learning experience, as well as time spent by students in areas of special interest.

Evaluation of student performance in examinations can reveal very useful information. If student selection has been correctly done, a high failure rate in a programme indicates something amiss in the curriculum content, teaching-learning activities or assessment system. The programme committees need to monitor the performance rate in each programme and investigate if the rate is too high or too low.

HEPs are also advised to refer to Guidelines to Good Practices for Monitoring, Reviewing and Continually Improving Institutional Quality.

10. LEADERSHIP, GOVERNANCE AND ADMINISTRATION

"There are many ways of administering an Educational Institution and the methods of management differ between HEPs. Nevertheless, governance that reflects the leadership of an academic organisation must emphasise excellence and scholarship. At the departmental level, it is crucial that the leadership provides clear guidelines and direction, builds relationships amongst the different constituents based on collegiality and transparency, manages finances and other resources with accountability, forge partnership with significant stakeholders in educational delivery, research and consultancy and dedicates itself to academic and scholarly endeavours. Whilst formalised arrangements can protect these relationships, they are best developed by a culture of reciprocity, mutuality and open communication" (COPPA, 2008, pp.28).

Leadership

In this programme, academic leadership is largely focused on suitable qualified persons to carry out the necessary curriculum monitoring and review of computing programmes. The leaders of the programme should be a full time staff with relevant knowledge and reflects the attributes of good ethical values in work practices.

The leadership requirement of these programme standards is complementary to Area 8 in the COPPA document. Thus, the specific positions and the programme leadership positions (e.g., Coordinator, Head of Department, Head of Programme or Dean of faculty) offered at different levels in the institution must preferably fulfil the qualifications and experience as follows:

Diploma and Certificate

 A Bachelor's Degree in Computing or related area with a minimum of FIVE (5) years relevant experience.

Bachelor's Degree and below

 A Master's Degree with at least ONE (1) qualification in computing or related area.

Master's Degree and below

 A Doctoral Degree, with at least ONE (1) qualification in computing or related area;

OR

ii. A Master's Degree with 10 years relevant experience, with at least ONE (1) qualification in computing or related area.

Doctoral Degree and below

i. A Doctoral Degree with THREE (3) years experience in related area, with at least ONE (1) qualification in computing or related area.

Governance

The HEPs must comply with the policies and practices of good governance according to applicable laws (e.g Private Higher Education Institutions Act 1996 (Act 555), circular). HEPs are encouraged to benchmark the programme in order to ensure comparability with computing programmes offered by international universities that have good standing.

For postgraduate programme in computing, the following items need special attention

- In order to ensure the quality of postgraduate programmes in computing, the HEPs should fulfil the Code of Practice for Institutional Audit (COPIA) requirements. The HEPs should also comply with MQA postgraduate standards. HEPs should implement monitoring and review policies to ensure postgraduate research students complete their studies within a reasonable time.
- Joint supervision should be encouraged with external supervisors locally and abroad.
- HEPs should establish mechanisms to ensure quality of research output, for example publication in books by reputable publishers, peer reviewed, international journals, policy recommendations, etc.

11. CONTINUAL QUALITY IMPROVEMENT

"Increasingly, society demands greater accountability from HEPs. Needs are constantly changing because of the advancements in science and technology, and the explosive growth in global knowledge, which are rapidly and widely disseminated. In facing these challenges, HEPs have little choice but to become dynamic learning organisations that need to continually and systematically review and monitor the various issues so as to meet the demands of the constantly changing environment" (COPPA, 2008, pp.30-31).

The Higher Education Providers (HEPs) are expected to provide evidence of ability to keep pace with changes in the field and requirements of stakeholders. These should be demonstrated by:

- A comprehensive curriculum review should be conducted at least once every programme cycle. However, updating the curriculum to keep pace with the current developments should be conducted at a more regular interval.
- ii. Continuous quality assessment processes by external reviewers who are qualified in the relevant fields.
- iii. Continuous benchmarking against top universities at national and international level.

In addition HEPs are strongly encouraged to adopt the following practices, but not limited to;

- i. linkages with industry;
- ii. continuous review of industrial attachment practices and records;
- iii. dialogue sessions with stakeholders;
- iv. active participation of academic staff at relevant conferences, seminars, workshops and short courses;
- v. presentations by invited speakers, local or international; and
- vi. organisation of conferences, seminars and workshops.

HEPs are also advised to refer to Guidelines to Good Practices for Monitoring, Reviewing and Continually Improving Institutional Quality.

REFERENCES

ACM/IEEE/AIS –The Joint Task Force for Computing Curricular. *Computing Curricula* (2005); The overview report covering undergraduate programs, September 2005, http://www.acm.org/education/curricula-recommendations.

ACM/IEEE – CS Joint Task Force on Computing Curricular. Computer Science Curricula (2013); Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, December 2013, http://www.acm.org/education/curricula-recommendations.

ACM/IEEE – CS Joint Task Force on Computing Curricular. *Computer Science Curriculum (2008); An Interim Revision of CS 2001*, December 2008, http://www.acm.org/education/curricula-recommendations.

ACM/IEEE – CS Joint Task Force on Computing Curricular. *Computer Engineering (2004); Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering.* December 2004, http://www.acm.org/education/curricula-recommendations.

ACM/IEEE – CS Joint Task Force on Computing Curricular. *Information Technology* (2008); Curriculum Guidelines for Undergraduate Degree Programs in Information Technology. November 2008, http://www.acm.org/education/curricula-recommendations.

ACM/IEEE – CS Joint Task Force on Computing Curricular. Software Engineering (2004); Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. August 2004, http://www.acm.org/education/curricula-recommendations.

Association for Computing Machinery (ACM), Association for Information Systems (AIS) and Association of Information Technology Professionals (AITP). *Information Systems* (2002); Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems. http://www.acm.org/education/curricula-recommendations.

Association for Computing Machinery (ACM) and Association for Information Systems (AIS). (2010). *Information Systems (IS) (2010); Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems*. http://www.acm.org/education/curricula-recommendations.

J.T. Gorgone, P. Gray, E. A. Stohr, J.S. Valacich, and R. T. Wigand, *MSIS 2006. Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems* (Communications of AIS, Volume 17, Article 1). January 2006, http://www.acm.org/education/curricula-recommendations.

Malaysian Qualifications Agency (2007). *Malaysian Qualifications Framework – MQF*. Petaling Jaya, Malaysia.

Malaysian Qualifications Agency (2008). Code of Practice for Programme Accreditation – COPPA. Petaling Jaya, Malaysia.

Malaysian Qualifications Agency (2012). *Guidelines to Good Practices: Curriculum Design and Delivery – GGP: CDD.* Petaling Jaya, Malaysia.

Malaysian Qualifications Agency (2013). *Guidelines to Good Practices: Accreditation of Prior Experiential Learning (APEL)*. Petaling Jaya, Malaysia.

Malaysian Qualifications Agency (2009). *Code of Practice for Institutional Audit – COPIA*. Petaling Jaya, Malaysia.

Malaysian Qualifications Agency (2014). *Kompilasi Dasar (2009-2013) berdasarkan Kod Amalan Akreditasi Program.* Unpublished Book.

Malaysian Qualifications Agency (2013). *Standards: Master's and Doctoral Degree*. Unpublished Book.

Ministry of Education (2013). Buku Panduan Mata Pelajaran Pengajian Umum Institut Pengajian Tinggi.

Stevens Institute of Technology, Integrated Software & Systems Engineering Curriculum (iSSEc) Project, *Graduate Software Engineering 2009 (GswE2009) Curriculum Guidelines for Graduate Degree Programs in Software Engineering Version 1.0,* September 2009, http://www.acm.org/education/curricula-recommendations.

Surat Makluman MQA Bil. 7/2014 – Garis Panduan Beban Staf Akademik, rujukan (MQA100-1/7/2(9)), dated 1st October 2014.

LIST OF PANEL MEMBERS

NO.	NAME	ORGANISATION
1.	Prof. Datuk Dr. Shahrin bin Sahib@Sahibuddin -Chairperson- Alternate Member: Prof. Madya Dr. Mohd Khanapi bin Abd Ghani	Universiti Teknikal Malaysia Melaka (UTeM)
2.	Prof. Dr. Abdullah Mohd Zin -Co-Chairperson-	Universiti Kebangsaan Malaysia (UKM)
3.	Dr. Dzaharudin Mansor	Persatuan Industri Komputer dan Multimedia Malaysia (PIKOM)
4.	Dr. Simon Egerton	Monash University
5.	En. Tan Eng Hoo Alternate Member: En. Ang Kah Heng	Multimedia Development Corporation Sdn. Bhd. (MdeC)

APPENDIX 2

SKILLS COMPETENCY MATRIX (SCM)

Job Type	Alternative Job Titles	Discipline of Fresh
,,		Graduates
.NET Programmer	.Net Developer	Computer Science
	 Application Developer 	 Software Engineering
	(.Net)	
	 Application Engineer (.Net) 	
	 Software Engineer (.Net) 	
	 Software Programmer 	
	(.Net)	
C/C++ Programmer	C++ Developer	Computer Science
	C++ Graphics Programmer	Software Engineering
	C++ Software Analyst	
	C/C++ Software Engineer	
Cobol Programmer	Cobol Developer	Computer Science
	Microfocus COBOL	Software Engineering
	Developer	
	 PL/1 Developer 	
	(Cobol/DB2)	
Computer Operator	Computer Console	Computer Science
	Operator	Software Engineering,
	Computer Technician	Information Technology
	 Systems Operator 	 Information Systems
Contact Centre	Call Centre Agent	Computer Science
Agent (Inbound)	(Customer Service)	Software Engineering
	Call Centre Officer	Information Technology
	Call Centre Representative	Information Systems
	Customer Care	
	Coordinator	
	Customer Relationship	
	Executive (Call Centre)	

Joh Typo	Alternative Job Titles	Discipline of Fresh
Job Type	Alternative Job Titles	Graduates
	Customer Service	
	Associate	
	 Customer Service 	
	Executive (Contact Centre)	
	Customer Helpdesk Officer	
	Customer Service Officer	
	 Customer Service 	
	Representative	
	 International Customer 	
	Care Officer	
	 Reservation Sales 	
	Executive	
	Customer Care Consultant	
Contact Centre	Contact Centre Personnel	Computer Science
Agent (Outbound)	 Offshore Sales Executive 	Software Engineering
	 Outbound Contact Centre 	Information Technology
	Consultant	Information Systems
	 Phone Consultant 	
	 Strategic Business Event 	
	Executive	
	 Telesales Agent 	
	 Telesales Executive 	
	 Telesales Representative 	
Contact Centre	N/A	Computer Science
Recovery Staff		Software Engineering
		Information Technology
		Information Systems
Customer Support	Customer Support Officer	Computer Science
Engineer	 Customer Support 	Software Engineering
	Representative	Information Technology
	 Product Engineer 	Information Systems

Job Type	Alternative Job Titles	Discipline of Fresh
oob Type	Alternative oob Titles	Graduates
	Product Support Engineer	
	Product Support Officer	
	Customer Care Engineer	
Firmware Engineer	Bios Engineer	Computer Science
	Device Driver Engineer	Software Engineering
	Drivers Engineer	
	Embedded Software	
	Engineer	
	Graphic Driver Engineer	
	Video Driver Engineer	
Fraud Detector	Transaction Monitoring	Computer Science
	Manager	Software Engineering
	Fraud Specialist	Information Technology
		Information Systems
IT Marketing	Marketing Manager	Computer Science
Executive		Software Engineering
		Information Technology
		Information Systems
IT Project	Project Administrator	Computer Science
Coordinator		Software Engineering
		Information Technology
		Information Systems
IT Sales Engineer	IT Sales Evangelist	Computer Science
	Pre-sales engineer	Software Engineering
		Information Technology
		Information Systems
Java Programmer	J2EE Programmer	Computer Science
	J2ME Programmer	Software Engineering
	Java Application	
	Developer	
	Java Developer	

lah Tuna	Alternative Joh Titles	Discipline of Fresh
Job Type	Alternative Job Titles	Graduates
	Java EE Programmer	
JDE Consultant	IT System Analyst (JDE)	Computer Science
	JDE Application Specialist	Software Engineering
		Information Technology
		Information Systems
Multimedia	Multimedia Specialist	Computer Science
Programmer	Media Producer	Software Engineering
	Multimedia Developer	Information Technology
	Technical Artist	Information Systems
Network Engineer	IT Network Systems	Computer Science
	Engineer	Information Technology
	Network Analyst	
	Network Specialist	
	Systems Administrator	
Oracle Database Administrator	Oracle Database Analyst	Computer Science
Administrator	Oracle Database Engineer	Software Engineering
	Oracle Database	Information Systems
	Specialist	
PHP Programmer	PHP Developer	Computer Science
	Web Programmer (PHP)	Software Engineering
Product	N/A	Computer Science
Characterization Engineer		
RPG Programmer	IT Executive (RPG)	Computer Science
	RPG Business Analyst	Software Engineering
	RPG Software Developer	
	RPG Software Engineer	
	RPG System Analyst	

Job Type	Alternative Job Titles	Discipline of Fresh
		Graduates
Software Engineer	Software Development	Computer Science
	Engineer	Software Engineering
Software QA	QA Analyst	Computer Science
Engineer	QA Executive	Software Engineering
	Quality Engineer	
	Product Assurance	
	Engineer	
	Release Manager	
	Software Tester	
	Test Engineer	
SQL Database	SQL Database Analyst	Computer Science
Administrator	SQL Database Engineer	Software Engineering
	SQL Database Specialist	Information Systems
Technical Helpdesk	Access Administration	Computer Science
Analyst	Analyst	Software Engineering
	Contact Centre Executive	Information Technology
	Contact Centre Service	Information Systems
	Desk Executive	
	Customer Care Consultant	
	Inbound Technical Support	
	Representative	
	Technical Support	
	(Contact Centre)	
Technical Support	Computer Support	Computer Science
Engineer	Engineer	Software Engineering
	IT Assistant	Information Technology
	IT Support Executive	Information Systems
	System Engineer	
	Technical Specialist	
Test Development	N/A	Computer Science
Engineer		Software Engineering
<u> </u>		

2

Job Type	Alternative Job Titles	Discipline of Fresh Graduates
Web Designer	Flash Animator	Computer Science
	Flash Designer	Software Engineering
	Flash Developer	Information Technology
	Interface Designer	Information Systems
	Multimedia Designer	
	Multimedia Producer	
	Web Animator	
Web Programmer	Web Developer	Computer Science
		Software Engineering
		Information Technology
		Information Systems
Webmaster	Web Administrator	Computer Science
	Web Content Manager	Software Engineering
		Information Technology
		Information Systems

BODY OF KNOWLEDGE

The breadth and depth of the required Computing (ICT) Body of Knowledge should reflect the different level of study from Certificate to Doctoral Degree level. Higher Education Providers (HEPs) are required to develop programmes to reflect current best practices. Institutions are advised to refer to the Association of Computing Machinery (ACM) website or other relevant Computing Curricula and Description.

CORES FOR COMPUTING

(A) CERTIFICATE

Body of Knowledge	Detail Topics
Computer Architecture	Computer Systems
	Data Representation and Manipulation
	Registers
	Memory Organization
	Bus Configurations
	Timing Issues and Pipelining
	Assembly Language
Database	Database Concepts
	Normalization
	Data Models
	Database Management Systems
	Introduction to SQL
Mathematics	Number base systems
	Control of accuracy
	Formal Language
	Set, Relation and Function
	Counting Principle
	Logic, truth tables
	Boolean Algebra

Body of Knowledge	Detail Topics
	Graphs and Trees
Network and Communication	Data Communication and Transmission
	Classifying Networks
	LANs and WANs
	Networking and Internetworking devices
	Broadcasting Communications / Voice Over
	IP / Telecommunications
	Network Protocols and Standards
	Modulation and Multiplexing
	Switching
	Socket Programming
Operating Systems	Hardware and Software
	System Software and Architecture
	Process Control Management
	Deadlocks
	Memory Management
	I / O Management
	File System Management
	System Security
	Network Operating System
Programming Fundamentals	Problem Solving and Program Design
	Programming Language concepts
	Control Structures
	Operators
	Arrays
	Functions/Methods
	String Manipulation
	Pointer expression/arithmetic
	Development of Graphical User Interface

(B) DIPLOMA

Body of Knowledge	Detail Topics
Computer Architecture	Computer Systems
	 Data Representation and Manipulation
	Registers
	Memory Organization
	Bus Configurations
	 Timing Issues and Pipelining
	Assembly Language
Database	Database Concepts
	 Normalization
	Data Models
	Database Management Systems
	 Introduction to SQL
	Database design
Discrete Mathematics	Number base systems
	 Control of accuracy
	Formal Language
	Set, Relation and Function
	Counting Principle
	Logic, truth tables
	Boolean Algebra
	Graphs and Trees
Calculus and Algebra	Real number
(Only for Computer Science	Set, function and relation
and Software Engineering)	Linear equation
	 Solving quadratic equation
	Differentiation of simple functions
	 Integration of simple functions
Network and Communication	Data Communication and Transmission
	Classifying Networks
	LANs and WANs

Body of Knowledge	Detail Topics
	Networking and Internetworking devices
	Broadcasting Communications/Voice Over
	IP/Telecommunications
	Network Protocols and Standards
	Modulation and Multiplexing
	Switching
	Socket Programming
Operating Systems	Hardware and Software
	System Software and Architecture
	Process Control Management
	Deadlocks
	Memory Management
	I/O Management
	File System Management
	System Security
	Network Operating System
Programming Fundamentals	Problem Solving and Program Design
	Programming Language concepts
	Control Structures
	Operators
	Arrays
	Function /Methods
	String Manipulation
	Pointer expression/arithmetic
	Development of Graphical User Interface
System Analysis and Design	Fundamentals of SAD
	Project Management
	Overview of SDLC
	Preliminary Investigation/Feasibility Study
	Systems Analysis
	Data Dictionary

Body of Knowledge	Detail Topics
	Process Specification
	Input / Output Design

(C) BACHELOR'S DEGREE

CORES FOR EACH OF THE FOUR (4) DISCIPLINES OF COMPUTING

a) Computer Science

The body of knowledge for the Computer Science discipline and corresponding detail topics are listed below. For more information, refer to "Computer Science 2013: Curriculum Guidelines for Undergraduate Programs in Computer Science".

Body of Knowledge	Detail Topics
Algorithms and Complexity	Basic Analysis
	Algorithmic Strategies
	Fundamental Data Structures and Algorithms
	Basic Automata, Computability and
	Complexity
Architecture and Organisation	Digital Logic and Digital Systems
	Machine Level Representation of Data
	Assembly Level Machine Organization
	Memory System Organization and
	Architecture
	Interfacing and Communication
Computational Science	Introduction to Modeling and Simulation
Discrete Structures	Sets, Relations, and Functions
	Basic Logic
	Proof Techniques
	Basics of Counting
	Graphs and Trees
	Discrete Probability
Graphics and Visualization	Fundamental Concepts

Body of Knowledge	Detail Topics
Human-Computer Interaction	Foundations
	Designing Interaction
Information Assurance and	Security Foundational Concepts in Security
Security	Principles of Secure Design
	Defensive Programming
	Threats and Attacks
	Network Security
	Cryptography
Information Management	Information Management Concepts
	Database Systems
	Data Modeling
Intelligent Systems	Fundamental Issues
	Basic Search Strategies
	Basic Knowledge Representation and
	Reasoning
	Basic Machine Learning
Networking and	Introduction
Communication	Networked Applications
	Reliable Data Delivery
	Routing And Forwarding
	 Local Area Networks
	Resource Allocation
	Mobility
Operating Systems	Overview of Operating Systems
	Operating System Principles
	Concurrency
	Scheduling and Dispatch
	Memory Management
	Security and Protection
Parallel and Distributed	Parallelism Fundamentals
Computing	Parallel Decomposition

Body of Knowledge	Detail Topics
	Communication and Coordination
	 Parallel Algorithms, Analysis, and
	Programming
	Parallel Architecture
Programming Languages	Object-Oriented Programming
	Functional Programming
	Event-Driven and Reactive Programming
	Basic Type Systems
	Program Representation
	Language Translation and Execution
Software Development	Algorithms and Design
Fundamentals	Fundamental Programming Concepts
	Fundamental Data Structures
	Development Methods
Software Engineering	Software Processes
Methods	Software Project Management
	Tools and Environments
	Requirements Engineering
	Software Design
	Software Construction
	Software Verification and Validation
	Software Evolution
	Software Reliability
Systems Fundamentals	Computational Paradigms
	Cross-Layer Communications
	State and State Machines
	Parallelism
	Evaluation
	Resource Allocation and Scheduling
	 Proximity
	Virtualization and Isolation
	Reliability through Redundancy

Body of Knowledge	Detail Topics
Social Issues and	Social Context
Professional Practice	Analytical Tools
	Professional Ethics
	Intellectual Property
	Privacy and Civil Liberties
	Professional Communication
	Sustainability

b) Software Engineering

The body of knowledge for the Software Engineering discipline and corresponding detail topics are listed below. For more information, refer to "SE 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering".

Body of Knowledge	Detail Topics
Algorithms and Complexity	Basic Analysis
	Algorithmic Strategies
	 Fundamental Data Structures and
	Algorithms
	Basic Automata, Computability and
	Complexity
Architecture and Organisation	Digital Logic and Digital Systems
	Machine Level Representation of Data
	Assembly Level Machine Organization
	Memory System Organization and
	Architecture
	Interfacing and Communication
Programming Languages	Object-Oriented Programming
	Functional Programming
	Event-Driven and Reactive Programming
	Basic Type Systems
	Program Representation

Body of Knowledge	Detail Topics
	Language Translation and Execution
Software Development	Algorithms and Design
Fundamentals	Fundamental Programming Concepts
	Fundamental Data Structures
	Development Methods
Information Assurance and	Foundational Concepts in Security
Security	Principles of Secure Design
	Defensive Programming
	Threats and Attacks
	Network Security
	Cryptography
Information Management	Information Management Concepts
	Database Systems
	Data Modeling
Networking and	Introduction
Communication	Networked Applications
	Reliable Data Delivery
	Routing And Forwarding
	Local Area Networks
	Resource Allocation
	Mobility
Operating Systems	Overview of Operating Systems
	Operating System Principles
	Concurrency
	Scheduling and Dispatch
	Memory Management
	Security and Protection
Construction Technologies	API design and use
and Methods	Code reuse and libraries
	Object-oriented run-time issues
	Parameterization and generics
	Assertions, design by contract, defensive

Body of Knowledge	Detail Topics
	programming
	Error handling, exception handling, and fault
	tolerance
	State-based and table driven construction
	techniques
	Run-time configuration and
	internationalization
	Grammar-based input processing
	Concurrency primitives
	Middleware
	Construction methods for distributed
	software
	Constructing heterogeneous (hardware and
	software) systems
	Performance analysis and tuning
	Development environments
	GUI builders
	Unit testing tools
	Application oriented languages
	Application of abstract machines
	Application of specification languages and
	methods
	Automatic generation of code from a
	specification
	Program derivation
	Analysis of candidate implementations
	Mapping of a specification to different
	implementations
Mathamatical Farm de Carr	Refinement
Mathematical Foundations	Functions, Relations and Sets
	Basic Logic
	Proof Techniques

Body of Knowledge	Detail Topics
	Basic Counting
	Graphs and Trees
	Discrete Probability
	Finite State Machines, regular expressions
	Grammars
	Numerical precision, accuracy and errors
Engineering foundations and	Empirical methods and experimental
economics for software	techniques
	Statistical analysis
	Measurement and metrics
	Systems development
	Engineering design
	Theory of measurement
	Value considerations throughout the
	software lifecycle
	Generating system objectives
	Evaluating cost-effective solutions
	Realizing system value
Professional Practice	Group dynamics / psychology
	Communications skills (specific to SE)
	Professionalism
Software Modelling and	Modelling foundations
Analysis	Types of models
	Analysis fundamentals
	Requirements fundamentals
	Eliciting requirements
	Requirements specification and
	documentation
	Requirements validation
Software Design	Design concepts
	Design strategies
	Architectural design

Body of Knowledge	Detail Topics
	Human computer interface design
	Detailed design
	Design support tools and evaluation
Software Verification and	V&V terminology and foundations
Validation	Reviews
Vallacion	Testing
	Human computer UI testing and evaluation
	Problem analysis and reporting
Software Evolution	Evolution processes
	Evolution activities
Software Process	Process concepts
	Process implementation
Software Quality	Software quality concepts and culture
	Software quality standards
	Software quality processes
	Process assurance
	Product assurance
Software Management	Management concepts
	Project planning
	Project personnel and organization
	Project control
	Software configuration management

c) Information Technology

The body of knowledge for the Information Technology discipline and corresponding detail topics are listed below. For more information, refer to "IT 2008: The Computing Curricula Information Technology Volume".

Body of Knowledge	Detail Topics
Information Technology	Pervasive Themes in IT
Fundamentals	History of Information Technology

Body of Knowledge	Detail Topics
	IT and Its Related and Informing Disciplines
	Application Domains
Human Computer Interaction	Human Factors
	HCI Aspects of Application Domains
	Human-Centred Evaluation
	Developing Effective Interfaces
	Accessibility
	Emerging Technologies
	Human-Centred Software Development
Information Assurance and	Fundamental Aspects
Security	Security Mechanisms (Countermeasures)
	Operational Issues
	Policy
	Attacks
	Security Domains
	Forensics
	Information States
	Security Services
	Threat Analysis Model
	Vulnerabilities
Integrative Programming and	Inter-systems Communications
Technologies	Data Mapping and Exchange
	Integrative Coding
	Scripting Techniques
	Software Security Practices
	Miscellaneous Issues
	Overview of Programming Languages
System Administration and	Operating Systems
Maintenance	Applications
	Administrative Activities
	Administrative Domains
System Integration and	Requirements

Body of Knowledge	Detail Topics
Architecture	Acquisition and Sourcing
	Integration and Deployment
	Project Management
	Testing and Quality Assurance
	Organizational Context
	Architecture
Social and Professional	Professional Communications
Issues	Teamwork Concepts and Issues
	Social Context of Computing
	Intellectual Property
	Legal Issues in Computing
	Organizational Context
	Professional and Ethical Issues and
	Responsibilities
	History of Computing
	Privacy and Civil Liberties
Web Systems and	Web Technologies
Technologies	Information Architecture
	Digital Media
	Web Development
	Vulnerabilities
Information Management	IM Concepts and Fundamentals
	Database Query Languages
	Data Organization Architecture
	Data Modeling
	Managing the Database Environment
	Special-Purpose Databases
Math and Statistics for IT	Basic Logic
	Discrete Probability
	Functions, Relations and Sets
	Hypothesis Testing

Body of Knowledge	Detail Topics
	Sampling and Descriptive Statistics
	Graphs and Trees
	Application of Math & Statistics to IT
Networking	Foundations of Networking
	Routing and Switching
	Physical Layer
	Security
	Network Management
	Application Areas
Programming Fundamentals	Fundamental Data Structures
	Fundamental Programming Constructs
	Object-Oriented Programming
	Algorithms and Problem-Solving
	Event-Driven Programming
Platform Technologies	Operating Systems
	Architecture and Organization
	Computing Infrastructures

d) Information Systems

The body of knowledge for the Information Technology discipline and corresponding detail topics are listed below. For more information, refer to "IS 2010: The Curriculum Guidelines for Undergraduate Degree Programs in Information Systems".

Body of Knowledge	Detail Topics
Foundations of Information	Characteristics of the Digital World
Systems	Information systems components
	Information systems in organizations
	Globalization
	Valuing information systems
	Information systems infrastructure
	The Internet and WWW

Body of Knowledge	Detail Topics
	Security of information systems
	Business intelligence
	Enterprise-wide information systems
	Development and acquisition
	Information systems ethics and crime
Data and Information	Database approach
Management	Types of database management systems
	Basic file processing concepts
	Physical data storage concepts
	File organizations techniques
	Conceptual data model
	Logical data model
	Physical data model
	Database languages
	Data and database administration
	Transaction processing
	Using a database management system from
	an application development environment
	Use of database management systems in an
	enterprise system context
	Data / information architecture
	Data security management
	Data quality management
	Business intelligence
Enterprise Architecture	Service oriented architecture
	Enterprise architecture frameworks
	Systems integration
	Enterprise resource software
	Monitoring and metrics for infrastructure and
	business processes
	Green computing

Body of Knowledge	Detail Topics
	Virtualization of storage and systems
	The role of open source software
	Risk management
	Business continuity
	 Total cost of ownership and return on
	investment
	Software as a service
	Enterprise data models
	Data / information architecture and data
	integration
	Content management
	Audit and compliance
	System administration
	 IT control and management frameworks
	Emerging technologies
IS Project Management	Introduction to Project Management
	The Project Management Lifecycle
	 Managing Project Teams
	 Managing Project Communication
	 Project Initiation and Planning
	Managing Project Scope
	 Managing Project Scheduling
	 Managing Project Resources
	 Managing Project Quality
	 Managing Project Risk
	 Managing Project Procurement
	 Project Execution, Control & Closure
	 Managing Project Control & Closure
IT Infrastructure	Core computing system architecture concepts
	Core computing system organizing structures
	Core technical components of computer-
	based systems

Body of Knowledge	Detail Topics
	Role of IT infrastructure in a modern
	organization
	Operating systems
	Networking
	Organizing storage on organizational networks
	Data centers
	Securing IT infrastructure
	The role of IT control and service
	management frameworks (COBIT, ITIL, etc.)
	in managing the organizational IT
	infrastructure
	Ensuring business continuity
	Grid computing
	Cloud computing, computing as a service
	System performance analysis and
	management
	Purchasing of IT infrastructure technologies
	and services
Systems Analysis and Design	 Identification of opportunities for IT-enabled organizational change
	Business process management
	Analysis of business requirements
	Structuring of IT-based opportunities into
	projects
	Project specification
	Project prioritization
	Analysis of project feasibility
	Fundamentals of IS project management in
	the global context
	Using globally distributed communication and
	collaboration platforms
	Analysis and specification of system

Body of Knowledge	Detail Topics
	requirements
	Different approaches to implementing
	information systems to support business
	requirements
	Specifying implementation alternatives for a
	specific system
	Impact of implementation alternatives on
	system requirements specification
	Methods for comparing systems
	implementation approaches
	Organizational implementation of a new
	information system
	Different approaches to systems analysis &
	design: structured SDLC, unified
	process/UML, agile methods
IS Strategy, Management and	The IS function
Acquisition	IS strategic alignment
	Strategic use of information
	Impact of IS on organizational structure and
	processes
	IS economics
	IS planning
	Role of IS in defining and shaping competition
	Managing the information systems function
	Financing and evaluating the performance of
	information technology investments and
	operations
	Acquiring information technology resources
	and capabilities
	Using IS/IT governance frameworks
	IS risk management

Glossary

1.	MPU Module	Module that is taken to fulfil national requirements as defined by the government.
2.	Computing	Computing is concerned with the understanding, design, implementation and exploitation of computation and computer, and communication technology.
3.	Core Modules	Modules that are deemed common to a specific discipline of Computing as defined by this Programme Standards.
4.	Concentration/Specialisation	Modules taken to fulfill the requirements within an identified specialisation within a specific discipline of Computing
5.	Formative Assessment	A process of monitoring the achievement of the learning outcomes of students at a periodic time. This is also referred to as continuous assessment.
6.	Summative Assessment	A process of evaluating and grading the learning of students at the end of a module. This is also referred to as final assessment. This assessment can be in the form of written examination, oral examination, skill assessment or presentation.
7.	Graduate	A student who has successfully completed any level of qualification within this Programme Standards.

8.	Fresh Graduate	Fresh Graduate is defined as a graduate that has less than one year working experience in the related fields.
9.	Industrial Attachment/ Industrial Training/Internship	A period of time within the programme where students are required to be placed in the industry to gain industrial experience and enhance soft skills.
10.	Internationally Refereed Publications	Peer reviewed publications of international standing either as conference proceedings or in journals.
11.	Module	A unit of learning and teaching also described, as subject or course or unit in a programme.
12.	Programme	A structured and sequenced set of modules leading to an academic award/qualification.
13.	Field Elective Module	A module which is selected by a student from a group of identified computing modules which form part of the Minimum Graduating Credits for the programme.
14.	Free Elective Module	A module which is selected by a student from inside or outside the computing field.
15.	Related field	A field of study in Science and Technology or related to computing.